



Radiofrequency and microwave hyperthermia I: working principles, clinical results, and technical equipment.

### Ing. David Vrba, Ph.D.





# Introduction

"Illnesses which cannot be healed by herbs, can be cured by iron, what cannot be cured by iron can be cured by fire, and what cannot be healed by fire has to be considered as incurable".

Hyppocrates (c. 460 BC - 377 BC)







- Medical aspects of microwave thermotherapy
- Clinical modes of microwave hyperthermia





### State of the art – medical applications of EM field

EM fields are used in several well-established medical applications already

- Computer Tomography (CT)
- Magnetic Resonance Imaging (MRI)
- <u>Oncology</u> (cancer treatment) certain tumor cells are very sensitive to higher temperature heating of the tumor region at temperatures of 41 - 45 °C can selectively destroy tumor cells.
- <u>Physiotherapy</u> (treatment of rheumatic and skeletal diseases). Like in HT therapeutic effect is caused on the principle of heating of biological tissue, but to lower temperatures usually only up to 41 °C. It is used for treating pain in certain rheumatic and degenerative diseases and also for the treatment of chronic inflammations resistant to antibiotics. Often used in rehabilitation and physical therapy as well.
- <u>Urology</u> (BPH treatment) Microwave thermocoagulation heating up to temperatures usually around 70 °C. As an example can be given the microwave treatment of Benign Prostate Hyperplasia
- <u>Cardiology</u> (arrhythmia and fibrillations treatment, microwave angioplastics). Cardiac catheter thermal ablation is now standard of care for a variety of cardiac arrhythmia.
- <u>Surgery</u> (microwave scalpel, growing implants).
- <u>Ophthalmology</u> (retina corrections).
- <u>Neurology</u> (strol<sup>1</sup>) identifies





# State of the art – medical applications of EM field

- <u>Diathermia</u>: heating up to 41 °C (clinical application in physiotherapy).
- <u>Hyperthermia</u>: heating to the interval of 41-45 °C (clinical application in oncology).
- <u>Thermoablation</u>: over 45 °C (clinical application in urology, cardiology, etc.).





# Basic description of biological and clinical effects of the hyperthermia

- The effect of hyperthermia is strongly dependent on the achieved tumor temperatures and heating time:
  - cell killing effect doubles every centigrade, e.g. one hour at 42 °C is equivalent to half an hour at 43 °C.
- Hypoxic tumors are more resistant to ionizing radiation than well oxygenated tumors, while hyperthermia is particularly effective in hypoxic tumors:
  - Large solid tumors often contain hypoxic areas due to heterogeneous vascularization, which makes hyperthermia a useful addition to radiotherapy.
- The complementary effect of hyperthermia to radiotherapy:
  - cells in the S-phase of the cell cycle are more sensitive to HT as compared to the G1- phase.
- Blood flow is increased during hyperthermia:
  - This improves tumor oxygenation and thereby probably enhances radiosensitivity. The increased blood flow also improves the uptake of cytostatics in tumor cells.
- Hyperthermia also induces radiosensitisation and chemosenstisation. Repair of DNA damage caused by radiotherapy is inhibited by hyperthermia.





| Referencies           | Tumour type                                 | Treatment                                                       | Patients                  | Endpoint                             | Effect  | Effect        |
|-----------------------|---------------------------------------------|-----------------------------------------------------------------|---------------------------|--------------------------------------|---------|---------------|
|                       |                                             | modality                                                        | (lesions)                 |                                      | with HT | without<br>HT |
| Valdagni et al., 1993 | Lymphnodes of<br>head & neck<br>tumours     | FRT+/-HT                                                        | 41 (44)                   | CR                                   | 83%     | 41%           |
|                       |                                             |                                                                 |                           | 5-yrlocal<br>control                 | 69%     | 24%           |
|                       |                                             |                                                                 |                           | 5-yr<br>survival                     | 53%     | 0%            |
| Overgaard et          | Melanoma                                    | RT+/-HT                                                         | 70 (138)                  | CR rate                              | 62%     | 35%           |
| al.,1995              |                                             |                                                                 |                           | 2-yr local<br>control                | 46%     | 28%           |
| Vernon et al., 1996   | Breast                                      | RT+/-HT                                                         | 306                       | 6CR                                  | 59%     | 41%           |
| EL Jones et al., 2005 | Breast                                      | RT+/-HT                                                         | 108                       | CR                                   | 66%     | 42%           |
|                       |                                             |                                                                 |                           | Local<br>control                     | 48%     | 25%           |
| Van der Zee et        | Bladder, cervix                             | RT+/-HT                                                         | 358                       | CR                                   | 55%     | 39%           |
| al.,2000              | and rectum                                  |                                                                 |                           | 3-yr<br>survival                     | 30%     | 24%           |
| Van der Zee et        | Cervix                                      | RT+/-HT                                                         | 114                       | CR                                   | 83%     | 57%           |
| al.,2000              |                                             |                                                                 | 3-yr<br>survival          |                                      | 51%     | 27%           |
| Datta et al.,1997     | Cervix                                      | RT+/-HT                                                         | 64                        | CR                                   | 55%     | 31%           |
| Harima et al., 2001   | *** EVROPSK<br>* * Evropské s<br>Operační p | Á UNIE<br>trukturální a investiční fo<br>rogram Výzkum, vývoj a | ndy<br>vzdělávání MINISTE | ERSTVO ŠKOLSTVÍ,<br>ZE A TĚLOVÝCHOVY | 85%     | 50%           |

| Referencies                         | Tumour type                                                                                                                                                                            | Treatment<br>modality        | Patients<br>(lesions) | Endpoint                              | Effect<br>with HT | Effect<br>without<br>HT |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|---------------------------------------|-------------------|-------------------------|--|
| Berdov et al.,1990                  | Rectum                                                                                                                                                                                 | RT+/-HT<br>preoperativ<br>e  | 115                   | 5-yr<br>survival                      | 36%               | 7%                      |  |
| You Q-S et al.,1993                 | Rectum                                                                                                                                                                                 | RT+/-HT<br>preoperativ<br>e  | 122                   | CR                                    | 23%               | 5%                      |  |
| Colombo et al., 2003                | Bladder                                                                                                                                                                                | CT+/-HT<br>postoperati<br>ve | 83                    | 2-yr relapse<br>free<br>survival      | 82%               | 38%                     |  |
| Colombo et al., 2010<br>(Follow up) | Bladder                                                                                                                                                                                | CT+/-HT<br>postoperati<br>ve | 83                    | 10-yr<br>disease-<br>free<br>survival | 53%               | 15%                     |  |
| Issels et al., 2010                 | Soft                                                                                                                                                                                   | CT+/-HT                      | 341                   | Response                              | 28,80%            | 12,70%                  |  |
|                                     | tissue sarcoma                                                                                                                                                                         |                              |                       | 2-yr local progression                | 76%               | 61%                     |  |
|                                     |                                                                                                                                                                                        |                              |                       | 4-yr local                            | 66%               | 55%                     |  |
|                                     | EVROPSKÁ UNIE<br>Evropské strukturální a investiční fondy<br>Operační program Výzkum, vývoj a vzdělávání<br>MINISTERSTVO ŠKOLSTVÍ,<br>MINISTERSTVO ŠKOLSTVÍ,<br>MINISTERSTVO ŠKOLSTVÍ, |                              |                       |                                       |                   |                         |  |

### Clinical modes of microwave hyperthermia

- According to ESHO guidelines following classification of different clinical modes of microwave hyperthermia (or thermotherapy in general) can be made:
- Local hyperthermia Medical indications for local hyperthermia include:
  - chest wall recurrences
  - superficial malignant melanoma lesions
  - lymph node metastases of head & neck tumors.
- <u>Regional hyperthermia</u> Medical indications for regional hyperthermia include locally advanced and/or recurrent tumors of the pelvis
  - rectal carcinoma
  - cervical carcinoma
  - bladder carcinoma
  - prostate carcinoma
  - soft tissue sarcoma.
- <u>Part-body hyperthermia</u> Heated volume of a body region such as the whole pelvis, the whole abdomen or (if clinically desirable) the upper abdomen or lower thorax or others.





#### Clinical modes of microwave hyperthermia

- <u>Whole body hyperthermia (WBHT)</u> is a technique to heat the whole body either up to 42 °C for 60 minutes (so-called "Extreme WBHT") or only 39.5 – 41 °C for longer time, e.g. 3 hours (so-called "Moderate WBHT" or "Fever-like WBHT"). For WBHT, the patient is as far as possible thermally isolated, and infra-red radiation with different ranges of wavelengths (for several available systems) is depositing energy in the superficial tissues of the body until the desired temperature is achieved..
- <u>Thermoablation</u> Achieved temperatures are high (up to 90 °C), but the thermal gradients are quite steep and the effective range is 1 2 cm (i.e. lesions with diameters of 3 4 cm are the limit using standard techniques). Liver metastases (number up to 4) are the most frequent indication. The procedures are typically performed under MR control.
- Interstitial hyperthermia an array of interstitial antennas or electrodes is implanted in accessible tumors which might be located in deep or superficial tissues. The distance between the antennas must not exceed 1 2 cm, and therefore lesions with diameters below 5 cm are suitable (in order to limit the number of puncturing tracks).
- <u>Endoluminal hyperthermia</u> uses natural orifices to position various kinds of endocavitary applicators (microwave, radiowave, ultrasound, etc.) in direct contact to a tumor.





## Local hyperthermia





Example of the system for local hyperthermia - BSD 500 from PYREXAR Medical (Courtessy of PYREXAR Medical and Dr. Sennewald Medizintechnik, gmbh.)





## Depth of EM wave penetration

$$E(z) = E_0 e^{-\alpha z}$$

where *E* is electrical field intensity,  $E_o$  is its value at surface of biological tissue, *z* is the depth under the surface and  $\alpha$  means the attenuation constant of EM wave in the lossy media.

$$d = \frac{1}{\sqrt{\pi \sigma \mu_0 f}}.$$

The depth of the EM wave penetration d then has its definition in EM field theory based on decrease of amplitude of electrical field intensity  $E_0/e$ 

Operating frequencies of the applicators 27, 70, 434, 915 and 2450 MHz





The 3D spatial distribution of power P<sub>a</sub> absorbed in a biological object

$$P_a(x, y, z) = \frac{\sigma}{2} |\mathbf{E}(x, y, z)|^2.$$

The 3D spatial distribution of Specific Absorption Rate - the SAR [W/kg] indicates the EM energy absorbed in the biological tissue and, as shown by the unit, it is the power absorbed per 1 kg of tissue

$$SAR = \frac{\delta}{\delta t} \left( \frac{\delta W}{\delta m} \right) = \frac{\delta}{\delta t} \left( \frac{\delta W}{\rho \delta V} \right) = \frac{\delta P_a}{\delta m} = \frac{\delta P_a}{\rho \delta V},$$

where W is the electromagnetic energy absorbed in the biological tissue, t is the time and m denotes mass.  $P_a$  is the power of the electromagnetic wave that spreads the biological tissue,  $\rho$  is the density of the tissue, and V is the volume.





#### Depth of efficient treatment

In case of microwave hyperthermia the depth of the efficient treatment is given by distribution of temperature in the treated area - it is formulated as 25 % decrease of the SAR value with respect to maximum value of SAR inside the treated area.

Depth of EM wave penetration.

- At given working frequency and given type of biological tissue.
- EM field distribution in the aperture of the applicator.
  - Usually we are trying to create in the aperture of the applicator the distribution of EM field very similar to plane
- Aperture size of the applicator.
  - Bigger aperture size helps to approach better the EM field distribution inside applicator aperture to the case of plane wave.

#### 3D configuration of biological tissues in front of applicator aperture.

 Biological tissues can be very roughly sorted in two categories: either with high or with low water content. Tissues with high water content have higher attenuation than tissues with low water content.

#### Temperature of water in water bolus

• This water can cool the surface of the area to be treated and thus to improve the temperature profile inside this area.





### Regional hyperthermia





MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY

### Regional & part-body treatment system





# Applicator Sigma 60 on the left side & Sigma Eye 3D on the right side from PYREXAR Medical





#### Anatomical models for treatment planing



| Thelonious, 6-Year-Old Boy,<br>Physiological Data: |       |  |  |  |  |
|----------------------------------------------------|-------|--|--|--|--|
| Sex                                                | male  |  |  |  |  |
| Туре                                               | child |  |  |  |  |
| Age [Years]                                        | 6     |  |  |  |  |
| Height [m]                                         | 1.17  |  |  |  |  |
| Weight [kg]                                        | 19.3  |  |  |  |  |
| BMI [kg/m²]                                        | 14.0  |  |  |  |  |
| Number of Tissues                                  | 76    |  |  |  |  |







EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání



http://www.itis.ethz.ch/services/anatomical-models



# Dielectric properties of biological tissue

Interaction of EM field with biological tissue is thus influenced to a great extent by tissue complex permittivity  $\varepsilon$ .

$$\boldsymbol{\varepsilon} = \varepsilon' - j\varepsilon'' = \varepsilon'(1 - j\tan\delta), \ \tan\delta = \frac{\omega\varepsilon' + \sigma}{\omega\varepsilon'}.$$





# Treatment planning of clinical application of thermotherapy









# Companies developing hyperthermia systems

- <u>ALBA Hyperthermia Systems</u> (<u>http://www.albahyperthermia.com/</u>)
- Alba Hyperthermia System offers two hyperthermia systems now, one for local and another one for regional treatment:
- ALBA ON 4000 is a hyperthermia system for superficial treatment (working frequency 434 MHz, output power 200 W).
- ALBA 4D was presented in the year 2015. It is hyperthermia system with applicator created by 4 waveguides working at 70 MHz. ALBA 4D generates 4 RF signals each independently controlled both in amplitude and phase. Varying these parameters it is possible to focus the EM power at depth in the treated area.
- c) <u>Capacitive systems for thermotherapy</u>
- There are several companies which offer of microwave hyperthermia (or thermotherapy in general) systems with capacitive type of applicators. It should be told, that such systems have no capability to focus EM power into tumors especially in case of deep local or regional treatment. They can cause many treatment complications mainly overheating of fat tissue. This claim can be easily supported by basic rules known from the theory of EM field.





#### Regional Hyperthermia Systems ALBA 4D





Size of elliptical phantom: 36 x 24 x 100 cm<sup>3</sup>

muscle parameters:

 $\sigma$  = 0.55 Sm<sup>-1</sup>;  $\epsilon_r$  = 75 @70 MHz;  $\rho$  = 1000 kg/m<sup>-3</sup> fat layer thickness 1 cm:

 $\sigma$  = 0.06 Sm<sup>-1</sup>; ε<sub>r</sub> = 10 @70 MHz; ρ = 888 kg/m<sup>-3</sup>

EVROPSKÁ UNIE
Evropské strukturální a investiční fondy
Operační program Výzkum, vývoj a vzdělávání

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVÝ

#### HYPERTHERMIA TREATMENT FACILITIES, NAME AND LOCATION



ALBA Hyperthermia System ON 4000 (Oncology)

 ALBA Hyperthermia System ON 1000 (not Oncology) used by Football Clubs

ALBA Hyper
Oncology)





#### **Treatment Planning** in Regional Hyperthermia Systems

🣣 optim Volba parametru.

2. Aplikator

0.66791 0.70958

0

1. Aplikato

Amplituda

Faze

Amplituda Faze

\* pi [rad]

2

w

n



Numerical model of Applicator



#### **Different test scenarios**



EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

Aplikato

Amplitude

Faze

200

180

160

140

120

100

80

60

40

0

50

100

150

1

2

0





#### GUI of a simple 2D treatment planning system









EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY













# History of hyperthermia in the Czech Republic





### Example of hyperthermia treatment









MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY



Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

32

#### Example of treatment planning in a real patient





EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY

## **Example of patient treatment**









## **Example of patient treatment**









## Example of patient treatment







# Hyperthermia in Czech Republic

| Complete response (CR)      | 230 patients | 47% |  |
|-----------------------------|--------------|-----|--|
| Partial response (PR)       | 140 patients | 29% |  |
| Succesful treatment (CR+PR) | 370 patients | 76% |  |
| No response (NR)            | 120 patients | 24% |  |





# Hyperthermia in Czech Republic



Léčba laboratorní myší kmene C57BL/6 (vlevo), Balb/cJ (střed) a B+DNK1.1neg (vpravo). Fotografie byly pořízeny během experimentu ve Státním zdravotním ústavu.





# Hyperthermia in Czech Republic

| Tabulka 3: Hodnoty nastaveného výkonu regulovaného v závislosti na růstu teploty v jednotlivých oblastech. |                               |              |              |                               |               |            |            |                                |
|------------------------------------------------------------------------------------------------------------|-------------------------------|--------------|--------------|-------------------------------|---------------|------------|------------|--------------------------------|
| Myš                                                                                                        | $0~\mathrm{min}~[\mathrm{W}]$ | $3 \min [W]$ | $6 \min [W]$ | $9~\mathrm{min}~[\mathrm{W}]$ | $12 \min [W]$ | 15 min [W] | 18 min [W] | $21~\mathrm{min}~[\mathrm{W}]$ |
| 1                                                                                                          | 50                            | 50           | 50           | 75                            | 75            | 65         | 60         | 40                             |
| 2                                                                                                          | 75                            | 75           | 75           | 50                            | 30            | 30         | 25         | 25                             |
| 3                                                                                                          | 75                            | 75           | 50           | 50                            | 20            | 25         | 25         | 25                             |
| 4                                                                                                          | 75                            | 75           | 75           | 50                            | 50            | 40         | 30         | 30                             |
| 5                                                                                                          | 75                            | 75           | 75           | 75                            | 75            | 75         | 50         | 50                             |
| 6                                                                                                          | 75                            | 75           | 75           | 75                            | 75            | 75         | 50         | 50                             |
| 7                                                                                                          | 75                            | 75           | 50           | 30                            | 30            | 40         | 40         | 40                             |
| 8                                                                                                          | 75                            | 75           | 75           | 75                            | 75            | 75         | 75         | 75                             |
| 9                                                                                                          | 75                            | 75           | 75           | 75                            | 75            | 75         | 75         | 75                             |
| 10                                                                                                         | 75                            | 75           | 75           | 100                           | 100           | 100        | 100        | 100                            |
| 11                                                                                                         | 100                           | 100          | 100          | 100                           | 100           | 100        | 50         | 50                             |
| 12                                                                                                         | 100                           | 100          | 100          | 100                           | 100           | 60         | 60         | 60                             |







#### B+D-NK1.1neg





#### Elektrické parametry biologických tkání

- Různé biologické tkáně vykazují odlišné elektrické parametry
- Jedním z hlavních faktorů, určující hodnoty elektrických parametrů biologických tkání je obsah vody
  - tkáně s vyšším obsahem vody vykazují vyšší hodnoty permitivity a vodivosti







VRBA, Jan. *Lékařské aplikace mikrovlné techniky*. Praha: Nakladatelství ČVUT, 2007 dotisk. ISBN 978-80-01-02705-9.



