

Návod na laboratorní úlohu

Dynamic modeling of EM-induced neuronal activation inhibition & synchronization.

Název studijního předmětu: Electroceuticals for electrical and magnetic neurostimulation therapies

Vedoucí cvičení/experimentu: Ing Tomáš Dřížďal, Ph.D., Doc. Ing. David Vrba, Ph.D.

Anotace cvičení/experimentu:

Elektromagnetické pole (EMF) interaguje s neurony. Interakce může být stimulující, inhibiční nebo synchronizující a může být zamýšlená nebo nezamýšlená. K nezamýšlené stimulaci vystavením silným nízkofrekvenčním polím dochází například v gradientních cívkách magnetické rezonance (MRI), zatímco příklady zamýšlené stimulace zahrnují terapeutické aplikace (transkraniální stimulace, hluboká stimulace mozku, funkční elektrická stimulace atd.) Nebo nervová zařízení (umělá sítnice, nervové končetiny atd.). Modelování je zvláště cenné pro léčbu a hodnocení bezpečnosti a účinnosti zařízení, ale také pro optimalizaci výkonu zdravotnických prostředků.

Predikce bezpečnostních prahů, stimulační selektivity, frekvence impulzu, dopadu pulzního tvaru atd., je komplikována složitou strukturou a dynamikou iontových neuronových kanálů, nehomogenní povahou distribuce elektrického pole v lidském těle a komplexní vzájemné působení mezi nimi. To je důvod, proč je vyžadováno modelování propojené EM-neuronové dynamiky.

Modelování

V této části se student naučí pracovat v SW prostředí a nakreslí zjednodušený model. Vytvoří se koule, krychle a křivka představující bodovou elektrodu, tkáňové médium a axon. Je vytvořena další krychle, která se použije jako maska k místnímu upřesnění mřížky.

• Simulace

Po dokončení modelování je dalším krokem nastavení elektromagnetické simulace. V našem případě použijeme Ohmic Quasi-Static ke generování nízkofrekvenční simulace. Je třeba nastavit frekvenci a vlastnosti tkáně (elektrická vodivost). Pro typ okrajové podmínky použijeme Dirichletovu okrajovou podmínku. Pro přesný výpočet je třeba vytvořit jemnou výpočetní mřížku s rozlišením 0,008 mm ve všech třech osách.

• Analýza

Vyhodnocení simulace bude rozděleno do tří částí:

- 1. Profil pole EM podél čáry procházející středem domény.
- 2. Akční potenciál registrovaný v uzlu axonu, který byl vypálen v důsledku expozice axonu EM pole
- 3. Výsledky titrace ukazující kromě titračního faktoru také umístění a čas prvního zaznamenaného akčního potenciálu

Popis použitých zařízení/přístrojů:

PC stanice pro technické výpočty

[1] Reilly JP et al., Sensory effects of transient electrical stimulation - Evaluation with a neuroelectric Model, IEEE Trans Biomed Eng 32(12):1001-1011, 1985.

[2] Reilly, J. Patrick, and Alan M. Diamant. Electrostimulation: theory, applications, and computational model. Artech House, 2011.

[3] Neufeld, Esra, et al. "Simulation platform for coupled modeling of EM-induced neuronal dynamics and functionalized anatomical models." Neural Engineering (NER), 2015 7th International IEEE/EMBS Conference on. IEEE, 2015.

[4] Iacono, Maria Ida, et al. "MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck." PloS one 10.4 (2015)

[5] Neufeld, Esra, Ioannis V. Oikonomidis, and Niels Kuster. "Thresholds for interference with neuronal activity." Electromagnetic Compatibility (APEMC), 2015 Asia-Pacific Symposium on. IEEE, 2015.

Cíle cvičení/experimentu:

Tento tutoriál si klade za cíl demonstrovat začínajícím uživatelům, jak nastavit a spustit simulaci neuronové dynamiky v Sim4Life. V tomto tutoriálu jsou reprodukovány experimenty SENN popsané v Reilly J.P. a kol., IEEE TBE 32(12):1001-1011. V tomto nastavení je křivka představující axon umístěna dva milimetry od bodové elektrody umístěné v médiu simulujícím tkáň. Elektrody vyzařují konstantní stejnosměrný proud, který se šíří médiem a způsobuje depolarizaci axonální membrány.

Postup

- 1. Vytvořte nový projekt výběrem "new project" v záložce "Flle/New"
- 2. Vyberte záhlaví "Model" v jehož prostředí se provede vytvoření modelu
- 3. Klikněte na záložku "Solids" a vyberte "Sphere"
- 4. Klikněte na počátek (x = 0, y = 0, z = 0, viditelný ve *"status bar"* dole na obrazovce) modelovací mřížky ve 3D okně a začněte kreslit střed koule. Ručně zadejte poloměr v dialogu koule v levém horním rohu 3D okna a nastavte jej na 0,1 mm.
- 5. Klikněte na záložku "Solids" a vyberte "Block"
- 6. Klikněte na počátek (x = 0, y = 0, z = 0, viditelný ve *"status bar"* dole na obrazovce) modelovací mřížky ve 3D okně a začněte kreslit krychli. Ručně zadejte délky stran v dialogu *"Block"* v levém horním rohu 3D okna a nastavte je na 10 mm pro všechny strany. Zaškrtněte políčko *"Centerd"*.
- 7. Klikněte na záložku "Sketch" a vyberte "Spline"
- Klepněte na libovolné dva body ve 3D okně a stisknutím klávesy *Esc* ukončete nástroj pro modelování. Vyberte *"Spline 1"* a upravte souřadnice bodu v okně *"Properties"* na *"Point0 (-10, 2, 0)"* a *"Point1 (10, 2, 0)"*.
- 9. Klikněte na záložku "Solids" a vyberte "Block"
- 10. Klikněte na počátek (x = 0, y = 0, z = 0, viditelný ve *"status bar"* dole na obrazovce) modelovací mřížky ve 3D okně a začněte kreslit krychli. Ručně zadejte délky stran v dialogu *"Block"* v levém horním rohu 3D okna a nastavte je na 1 mm pro všechny strany. Zaškrtněte políčko *"Centerd"*.

- 11. Vyberte *"Sphere 1"* objekt v okně Model Explorer a přejmenujte ho na *"Electrode"* zmačknutím klávesy F2 a potvrďte zmačknutím klávesy Enter.
- 12. Dále přejmenujte objekty "Block 1" na "Tissue", "Spline 1" na "Axon" a "Block 2" na "Grid Mask".
- 13. Přepněte do simulačního nastavení kliknutím na záložku "Simulation"
- 14. Pod "Simulation" klikněte na záložku "New" a Zvolte "EM LF Ohmic Quasistatic" pro vygenerování nízkofrekvenční simulace.
- 15. V okně "Explorer" vyberte vzniklou simulaci a pomocí klávesy F2 ji přejmenujte na "EM Electrode Stimulation".
- 16. Klikněte na záložku "Multi-Tre" a zvolte "Model"
- 17. Vyberte *"Tissue"* v Multi-Tree okně a přetáhněte jej do nadřazené složky simulace s názvem *"EM Electrode Stimulation"* v okně *"Explorer"*
- 18. Klikněte na "Setup" v okně "Explorer" a nastavte frekuenci na 0 Hz.
- 19. V *"Materials"* zvolte *"Material Settings (1)"* které obsahuje *"Tissue"* a nastavte elektrickou vodivost na 0.333 S/m .

Pr	operties		μ×
4	🗁 Materials		
4	Air		
	Туре	Dielectric	
Prop	Mass Density	1.205	kg/m^3
	▲ Electrical Properties		
	Electric Conductivity		S/m
	Rel. Permittivity		
	▲ Magnetic Properties		
	Rel. Permeability		
	Magnetic Conductivity		Ohm/m
4	Material Settings		
	Туре	Dielectric	
	Mass Density	1000	kg/m^3
	▲ Electrical Properties		
	Electric Conductivity	0.333	S/m
	Rel. Permittivity		
	▲ Magnetic Properties		
	Rel. Permeability		
	Magnetic Conductivity		Ohm/m

- 20. V *"Boundary Conditions"* zvolte *"Boundary Settings Dirichlet (6)"* a nastave konstanntní potenciál *"Constant Potential"* na 0.0004 V v okně *"Properties"*
- 21. Klikněte pravým tlačítkem myši na "Boundary Conditions" a vyberte "New Settings".
- 22. Vyberte nově vytvořenou skupinu hraničních podmínek v okně *"Simulation Explorer"* a nastavte *"Constant Potential" na* 1 V v okně *"Properties"*
- 23. Zvolte "Electrode" v okně *Multi-Tree Model* a přetáhněte tento objekt do nově vytvořené skupiny hraničních podmínek

Properties		μ×
▲ δΩ Boundary Condition ▲ δΩ Boundary Settings	ons s	
Boundary Type Constant Potential Phase	Dirichlet 0.0004 0	V deg
 δΩ Boundary Setting Boundary Type Constant Potential 	s 1 Dirichlet 1	
Phase	U	deg

- 24. Klikněte pravým tlačítkem myši na "Grid" a dále pak zvolte "New Settings" a "Manual", tuto operaci zopakujte ještě jednou
- 25. Vyberte *"Tissue"* a *"Electrode"* v *"Automatic Default (2)"* skupině a přetáhněte tyto objekty do skupiny "Manual"
- 26. Vyberte "Automatic Default" skupinu a smažte zmačknutím klávesy Delete.
- 27. Vyberte "Grid Mask" z okna "Multi-Tree | Model" a přetáhněte ho do skupiny "Manual 1 1mm"
- 28. Vyberte skupinu "Manual 1 1mm (1)" a změňte "Maximum Step" v okně "Properties" na 0.008 mm pro všechny tři osy
- 29. Klikněte na "Grid" a změňte "Padding Settings" v okně "Properties" na "Manual" a nastavte "Top Padding" a "Bottom Padding" na 0 mm pro všechny tři osy
- 30. Klikněte pravým tlačítkem na "Grid" a zvolte "Update Grid"

🖌 🎬 Grid 1// x 1// x	1//=5.	.545 MC	ells						
Discretization Settings	Automat	ic							
	-								
	-	0.625	0.625	0.625					
Grading	8			20					
Padding Settings		Manual							
Bottom Padding	-	0			mm				
Top Padding		0			mm				
Extra Bottom Padding		0			Cells				
Extra Top Padding		0			Cells				
Manual	R Manual								
Maximum Step	1	1			mm				
Geometry Resolution		1			mm				
Priority	5	50							
Manual 1									
Maximum Step	-	0.008	0.008	0.008	mm				
Geometry Resolution	-	1			mm				
Priority		50							

- 31. Klikněte pravým tlačítkem myši na "Voxels" a zvolte "Create Voxels"
- 32. Klikněte pravým tlačítkem myši na "Solver" a zvolte "Run"
- 33. V záložce "Simulation" zvolte "New" a dále pak "Neuron"
- 34. Nově vytvořenou simulaci "Nr" přejmenujte pomocí klávesy F2 na "SENN Neuronal Dynamics".
- 35. Zvolte "Axon" objekt v okně "Multi-Tree Model" a přetáhněte ho do "SENN Neuronal Dynamics" simulace a vyberte "SENN Neuron" v dialogovém okně určujícím jaký model bude použit

Simulation					×
The entity "Axon" can	be interpreted a	s:			
	SENN Neuro				
	MOTOR Neur	on			
	RAT Neuro	n			
	Sweeney Neu	ron			
Please select what ro	les should be app	lied.			
	Ok	Skip	SI	cipAll	

36. Klikněte na *"Setup"* v okně *"Explorer" a nastavte "Global Temperature"* na 22 °C v okně *"Properties",* a dále se přesvědčte že *"Titration"* je vybrán.

- 37. Zvolte "Neurons", vyberte "SENN Neuron Settings (1)" a klikněte na záložku "Load Model" v "Simulations"
- 38. Klikněte pravým tlačítkem myši na "Sources" a zvolte "New Settings"
- 39. Z "Sensors" EM simulace "EM Electrode Stimulation" přetáhěte "Field Sensor Settings (1)" do "Source Settings 1" "SENN Neuronal Dynamics"

40. Nastavte "Pulse 1 Amplitude" na -1 v okně "Properties".

	џ×
Monopolar	
0.1	ms
0.1	ms
	Monopolar 0.1 -1 0.1

41. Klikněte na *"Sensors"* v okně *"Explorer"*, dále vyberte *"Point Sensor Tool"* v záložce *"*Simulation" a vyberte libovolné místo podél "Axon" modelu (bod se automaticky přichytí k modelu "Axon"

42. Vyberte *"Point Sensor Settings (1)"* v okně *"Explorer"* a v *"Section Name" změňte jméno na* to *"node1[4]"* a *"Relative* position" na 0 v okně *"Properties"*.

Properties		φ×
▲ D. Point Sensor Setting	ngs	2
Measured quantity	V	
Section name	node1[4]	
Relative position	0	
Enable grouping		

43. V "Solver" se nastavte "Duration" na 1ms a "Time Step" na 0.0025 ms

Properties			μ×	
		Show Expressions >		
 Recallent content Parallelization Handling Number of Threads Priority in Ares queue 	Manual 1 0			
Duration Time step Section names for spike detection	1 0.0025		ms ms	

- 44. Klikněte pravým tlačítkem myši na "Solver" a zvolte "Run" a počkejte, až doběhne výpočet
- 45. Změňte záložku "Simulation" na "Analysis"
- 46. Vyberte *"EM Electrode Stimulation"* v okně *"Explorer"* a vyberte *"Overall Field"* v okně *"Output View"* a zvolte *"Sensor Extractor"*.
- 47. V okně "*Output View"* klikněte pravým tlačítkem myši na "*EM E(x,y,z,f0)"*, dále ve "*Viewers"* vyberte "*Slice Viewer"* a nastavte "*Slice Index"* na 88 v okně "*Properties"*
- 48. V "Field Data Options" vyberte zobrazení "Abs. Magnitude" pole.
- 49. V "Visualization Options" sekci okna "Properties" zaškrtněte "Smooth" a vyberte "Color Bar" ve 3D okně a vyberte "linear scale"
- 50. V *"2D Plot"* sekci okna *"Properties"* vyberte *"Along Axis"* a zvolte "X" a pak nastavte *"Y* index" na 88 a zvolte *"Create Plot"*

- 51. Vyberte "SENN Neuronal Dynamics" v okně "Explorer", dále vyberte
- "PointSensor@Axon@node1[4]@0.00" z okna "Output View" a pak zvolte "Sensor Extractor"
- 52. Vyberte "PointSensor@Axon@node1[4]@0.00" z okna "Explorer" a dále zvolte "Plot"

- 53. Vyberte *"SENN Neuronal Dynamics"* z okna *"Explorer"* a vyberte *"TitrationSensor"* z okna *"Output View"*, dále vyberte *"Sensor Extractor"*
- 54. Vyberte "TitrationSensor" z okna "Explorer", zvolte "Titration Evaluator", a dále "Table View"

Table view								×
Titration								
Show 10 Tent	ries				Filter:			
Neuron Name		Location of First Spike	ŧ	Time of First Spike (ms)	ŧ	Titration Factor	13	÷
Axon		node1[4]		0.3750		1.5078		
Showing 1 to 2 o	f 2 er	ntries				Previous 1	Nex	ť

